Homework 09¶
约 608 个字 3 张图片 预计阅读时间 3 分钟
8.1.5¶
(a)我们有 \(b_0=\sum\limits_{i=1}^m 1=10,b_1=\sum\limits_{i=1}^mx_i=54.1,b_2=\sum\limits_{i=1}^mx_i^2=303.39,c_0=\sum\limits_{i=1}^my_i=1958.39,c_1=\sum\limits_{i=1}^my_ix_i=11366.843\)
解得 \(a_0=-194.138,a_1=72.0845\),即 \(P(x)=72.0845x-194.138,\text{error}=329\)
(b)\(b_3=1759.831,b_4=10523.1207,c_2=68006.6811\)
解得 \(a_0=1.23556,a_1=-1.14352,a_2=6.61821\),即 \(P(x)=6.61821x^2-1.14352x+1.23556,\text{error}=1.44\times 10^{-3}\)
(c)\(b_5=64607.97751,b_6=405616.743519,c_3=417730.09823\)
解得 \(a_0=3.42904,a_1=-2.37919,a_2=6.84557,a_3=-0.0136742\),即 \(P(x)=-0.0136742x^3+6.84557x^2-2.37919x+3.42904,\text{error}=5.27\times 10^{-4}\)
(d)\(\ln y=\ln b+ax\),\(c_0=52.0336,c_1=285.4898\)
解得 \(a_0=3.1888,a_1=0.372382\),即 \(P(x)=24.2588e^{0.372382x},\text{error}=418\)
(e)\(\ln y=\ln b+a\ln x\),\(b_0=10, b_1=16.6995,b_2=28.2537,c_0=52.0336,c_1=87.6334\)
解得 \(a_0=1.8308,a_1=2.01954\),即 \(P(x)=6.23903x^{2.01954},\text{error}=0.00703\)
8.2.3¶
(a)\(\int_{-1}^1 1dx=2,\int_{-1}^1 x^2dx=\frac{2}{3},\int_{-1}^1(x^2-2x+3)dx=\frac{20}{3},\int_{-1}^1(x^2-2x+3)xdx=-\frac{4}{3}\)
\(\therefore f(x)\approx \frac{10}{3}-2x=3.33333-2x\)
(b)\(\int_{-1}^1x^3dx=0,\int_{-1}^1x^4dx=\frac{2}{5}\)
\(\therefore f(x)\approx 0.6x\)
(c)\(\int_{-1}^1\frac{1}{x+2}dx=\ln 3,\int_{-1}^1\frac{x}{x+2}dx=2-2\ln 3\)
\(\therefore f(x)\approx \frac{\ln 3}{2}+(3-3\ln 3)x=0.54931-0.29584x\)
(d)\(\int_{-1}^1e^xdx=e-\frac{1}{e},\int_{-1}^1xe^xdx=\frac{2}{e}\)
\(\therefore f(x)\approx 1.17520+1.10364x\)
(e)\(\int_{-1}^1(\frac{1}{2}\cos x+\frac{1}{3}\sin 2x)dx=\sin 1,\int_{-1}^1(\frac{1}{2}x\cos x+\frac{1}{3}x\sin 2x)dx=-\frac{1}{6}(2\cos 2-\sin 2)\)
\(\therefore f(x)\approx 0.42074+0.42540x\)
(f)\(\int_{-1}^1\ln(x+2)dx=3\ln 3-2,\int_{-1}^1x\ln(x+2)dx=\frac{1}{2}(4-3\ln 3)\)
\(\therefore f(x)=0.64792+0.52812x\)