Homework 06¶
约 303 个字 2 张图片 预计阅读时间 2 分钟
7.4.1¶
(a)
\[
\begin{aligned}
\mathbf{A}^{-1}=72\times\begin{bmatrix}
\frac{1}{4} & -\frac{1}{3}\\
-\frac{1}{3} & \frac{1}{2}
\end{bmatrix}=\begin{bmatrix}
18 & -24\\
-24 & 36
\end{bmatrix}\\
\therefore K(\mathbf{A})=\|\mathbf{A}\|\|\mathbf{A}^{-1}\|=\frac{5}{6}\times 60=50
\end{aligned}
\]
(b)
\[
\begin{aligned}
\mathbf{A}^{-1}=2.32558\times\begin{bmatrix}
2.9 & -1.6\\
-6.8 & 3.9
\end{bmatrix}=\begin{bmatrix}
6.7442 & -3.7209\\
-15.8139 & 9.0698
\end{bmatrix}\\
\therefore K(\mathbf{A})=\|\mathbf{A}\|\|\mathbf{A}^{-1}\|=9.7\times 24.8837=241.3719
\end{aligned}
\]
(c)
\[
\begin{aligned}
\mathbf{A}^{-1}=-50000\times\begin{bmatrix}
2 & -2\\
-1.00001 & 1
\end{bmatrix}=\begin{bmatrix}
-100000 & 100000\\
50000.5 & -50000
\end{bmatrix}\\
\therefore K(\mathbf{A})=\|\mathbf{A}\|\|\mathbf{A}^{-1}\|=3.00001\times 200000=600002
\end{aligned}
\]
(d)
\[
\begin{aligned}
\mathbf{A}^{-1}=2.7330\times\begin{bmatrix}
321.8 & -58.09\\
-5.55 & 1.003
\end{bmatrix}=\begin{bmatrix}
879.4794 & -158.7600\\
-15.1682 & 2.7412
\end{bmatrix}\\
\therefore K(\mathbf{A})=\|\mathbf{A}\|\|\mathbf{A}^{-1}\|=327.35\times 1038.2394=339867.6676
\end{aligned}
\]
(e)
\[
\begin{aligned}
\mathbf{A}^{-1}&=\begin{bmatrix}
1 & 1 & -2\\
0 & 1 & -1\\
0 & 0 & 1
\end{bmatrix}\\
\therefore K(\mathbf{A})&=\|\mathbf{A}\|\|\mathbf{A}^{-1}\|=3\times 4=12
\end{aligned}
\]
(f)
\[
\begin{aligned}
\mathbf{A}^{-1}&=\begin{bmatrix}
27.5862 & -0.6897 & 0.0345\\
-11.4943 & 1.9540 & 0.0690\\
-1.1494 & -0.8046 & 0.2069
\end{bmatrix}\\
\therefore K(\mathbf{A})&=\|\mathbf{A}\|\|\mathbf{A}^{-1}\|=7\times 28.3104=198.1728
\end{aligned}
\]
7.4.9¶
\[
\begin{aligned}
H&=\begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3}\\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{bmatrix}\\
\hat{H}^{-1}&=\begin{bmatrix}
8.968 & -35.77 & 29.77\\
-35.77 & 190.6 & -178.6\\
29.77 & -178.6 & 178.6
\end{bmatrix}\\
\hat{H}&=\begin{bmatrix}
0.9799 & 0.4870 & 0.3238\\
0.4860 & 0.3246 & 0.2434\\
0.3232 & 0.2433 & 0.1949
\end{bmatrix}\\
\therefore\|H-\hat{H}\|_{\infty}&=0.04260
\end{aligned}
\]