跳转至

Homework 05

约 274 个字 4 张图片 预计阅读时间 1 分钟

7.2.3

(a)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda-2 & 1\\1 & \lambda-2\end{pmatrix}|=(\lambda-2)^2-1=0\Rightarrow\lambda_1=3,\lambda_2=1\)

\(\therefore\rho(\mathbf{A})=3>1\),不收敛

(b)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda & -1\\-1 & \lambda-1\end{pmatrix}|=\lambda(\lambda-1)-1=0\Rightarrow\lambda_1=\frac{1+\sqrt{5}}{2},\lambda_2=\frac{1-\sqrt{5}}{2}\)

\(\therefore\rho(\mathbf{A})=\frac{1+\sqrt{5}}{2}>1\),不收敛

(c)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda & -\frac{1}{2}\\-\frac{1}{2} & \lambda\end{pmatrix}|=\lambda^2-\frac{1}{4}=0\Rightarrow\lambda_1=\frac{1}{2},\lambda_2=-\frac{1}{2}\)

\(\therefore\rho(\mathbf{A})=\frac{1}{2}<1\),收敛

(d)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda-1 & -1\\2 & \lambda+2\end{pmatrix}|=\lambda^2+\lambda=0\Rightarrow\lambda_1=0,\lambda_2=-1\)

\(\therefore\rho(\mathbf{A})=1\),不收敛

(e)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda-2 & -1 & 0\\-1 & \lambda-2 & 0\\0 & 0 & \lambda-3\end{pmatrix}|=0\Rightarrow\lambda_1=\lambda_2=3,\lambda_3=1\)

\(\therefore\rho(\mathbf{A})=3>1\),不收敛

(f)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda+1 & -2 & 0\\0 & \lambda-3 & -4\\0 & 0 & \lambda-7\end{pmatrix}|=0\Rightarrow\lambda_1=7,\lambda_2=3,\lambda_3=-1\)

\(\therefore\rho(\mathbf{A})=7>1\),不收敛

(g)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda-1 & -1 & -1\\-2 & \lambda-3 & -2\\-1 & -1 & \lambda-2\end{pmatrix}|=0\Rightarrow\lambda_1=\lambda_2=1,\lambda_3=5\)

\(\therefore\rho(\mathbf{A})=5>1\),不收敛

(h)\(|\lambda\mathbf{E}-\mathbf{A}|=|\begin{pmatrix}\lambda-3 & -2 & 1\\-1 & \lambda+2 & -3\\-2 & 0 & \lambda-4\end{pmatrix}|=0\Rightarrow\lambda_1=3,\lambda_2=4,\lambda_3=-2\)

\(\therefore\rho(\mathbf{A})=4>1\),不收敛


7.3.13

\[ \begin{aligned} \text{det}(T_w)&=\text{det}(D-wL)^{-1}\text{det}((1-w)D+wU)\\ &=\text{det}(D^{-1})\text{det}((1-w)D+wU)\\ &=\text{det}((1-w)I+wD^{-1}U)=(1-w)^n\\ \therefore\rho(T_w)^n&>>|(1-w)^n|=|(1-w)|^n\\ &\Rightarrow\rho(T_w)>>|1-w| \end{aligned} \]

评论