Homework 04¶
约 591 个字 5 张图片 预计阅读时间 3 分钟
6.5.7¶
(a)乘/除法:
- Step 2 : \(n-1\)
- Step 3,4,5 : \(\sum\limits_{i=2}^{n-1}(i-1+\sum\limits_{j=i+1}^n(i+i-1))=\frac{1}{3}n^3-\frac{7}{3}n+2\)
- Step 6 : \(n-1\)
加/减法:
- Step 3,4,5 : \(\sum\limits_{i=2}^{n-1}(1+n-i)\)
- Step 6 : 1
所以乘/除法需要的计算次数为 \(\frac{1}{3}n^3-\frac{1}{3}n\),加/减法需要的计算次数为 \(\frac{1}{2}n^2-\frac{1}{2}n\)
(b)乘/除法:\(\frac{n(n-1)}{2}=\frac{1}{2}n^2-\frac{1}{2}n\)
加减法同理
(c)
Multiplications/Divisions | Additions/Subtractions | |
---|---|---|
Factorizing into LU | \(\frac{1}{3}n^3-\frac{1}{3}n\) | \(\frac{1}{3}n^3-\frac{1}{2}n^2+\frac{1}{6}n\) |
Solving Ly=b | \(\frac{1}{2}n^2-\frac{1}{2}n\) | \(\frac{1}{2}n^2-\frac{1}{2}n\) |
Solving Ux=y | \(\frac{1}{2}n^2+\frac{1}{2}n\) | \(\frac{1}{2}n^2-\frac{1}{2}n\) |
Total | \(\frac{1}{3}n^3+n^2-\frac{1}{3}n\) | \(\frac{1}{3}n^3+\frac{1}{2}n^2-\frac{5}{6}n\) |
*** | ||
(d) |
Multiplications/Divisions | Additions/Subtractions | |
---|---|---|
Factorizing into LU | \(\frac{1}{3}n^3-\frac{1}{3}n\) | \(\frac{1}{3}n^3-\frac{1}{2}n^2+\frac{1}{6}n\) |
Solving \(Ly^{(k)}=b^{(k)}\) | \((\frac{1}{2}n^2-\frac{1}{2}n)m\) | \((\frac{1}{2}n^2-\frac{1}{2}n)m\) |
Solving \(Ux^{(k)}=y^{(k)}\) | \((\frac{1}{2}n^2+\frac{1}{2}n)m\) | \((\frac{1}{2}n^2-\frac{1}{2}n)m\) |
Total | \(\frac{1}{3}n^3+mn^2-\frac{1}{3}n\) | \(\frac{1}{3}n^3+(m-\frac{1}{2})n^2-(m-\frac{1}{6})n\) |
*** | ||
## 6.6.17 |
(a)\(|A|=3\alpha-2\beta=0\Rightarrow\alpha=\frac{2}{3}\beta\)
(b)\(|\alpha|>1,|\beta|<1\)
(c)\(\beta=1\)
(d)\(\alpha>\frac{2}{3},\beta=1\)
7.1.5(a)¶
7.1.7¶
令 \(A=\begin{pmatrix}1 & 1\\0 & 1\end{pmatrix},B=\begin{pmatrix}1 & 0\\1 & 1\end{pmatrix}\),那么此时 \(\|AB\|_{\infty}=2\),但是 \(\|A\|_{\infty}\|B\|_{\infty}=1\),不满足矩阵范数的性质
7.1.13¶
(1)\(\|A\|=0\Leftrightarrow A=\pmb{0}\)
- 如果 \(A=\pmb{0}\),很显然 \(\|A\|=0\)
- 如果 \(\|A\|=0,A\not=\pmb{0}\),那么我们可以找到一个非零向量 \(\pmb{x}=\{0,0,...,1,0,0,0\}\),其中 1 正好对应 A 中含有不为 0 的数的一行,使得 \(\|A\|\not=0\),矛盾
(2)\(\|\alpha A\|=|\alpha|\|A\|\),显然成立
(3)\(\|A+B\|\leq\|A\|+\|B\|\)
我们有 \(\|(A+B)\pmb{x}\|\leq\|A\pmb{x}\|+\|B\pmb{x}\|\)
那么 \(\|(A+B)\pmb{x}\|=\max\limits_{\|\pmb{x}\|=1}\|(A+B)\pmb{x}\|\leq\max\limits_{\|\pmb{x}\|=1}\|A\pmb{x}\|+\max\limits_{\|\pmb{x}\|=1}\|B\pmb{x}\|\)
(4)\(\|AB\|\leq\|A\|\|B\|\)
我们有 \(\|AB\pmb{x}\|\leq\|A\|\|B\pmb{x}\|\)
那么 \(\|AB\pmb{x}\|=\max\limits_{\|\pmb{x}\|=1}\|AB\pmb{x}\|\leq\max\limits_{\|\pmb{x}\|=1}\|A\|\|B\pmb{x}\|\leq\max\limits_{\|\pmb{x}\|=1}\|A\|\|B\|\|\pmb{x}\|=\|A\|\|B\|\)