跳转至

Homework 04

约 591 个字 5 张图片 预计阅读时间 3 分钟

6.5.7

(a)乘/除法:

  • Step 2 : \(n-1\)
  • Step 3,4,5 : \(\sum\limits_{i=2}^{n-1}(i-1+\sum\limits_{j=i+1}^n(i+i-1))=\frac{1}{3}n^3-\frac{7}{3}n+2\)
  • Step 6 : \(n-1\)

加/减法:

  • Step 3,4,5 : \(\sum\limits_{i=2}^{n-1}(1+n-i)\)
  • Step 6 : 1

所以乘/除法需要的计算次数为 \(\frac{1}{3}n^3-\frac{1}{3}n\),加/减法需要的计算次数为 \(\frac{1}{2}n^2-\frac{1}{2}n\)


(b)乘/除法:\(\frac{n(n-1)}{2}=\frac{1}{2}n^2-\frac{1}{2}n\)

加减法同理


(c)

Multiplications/Divisions Additions/Subtractions
Factorizing into LU \(\frac{1}{3}n^3-\frac{1}{3}n\) \(\frac{1}{3}n^3-\frac{1}{2}n^2+\frac{1}{6}n\)
Solving Ly=b \(\frac{1}{2}n^2-\frac{1}{2}n\) \(\frac{1}{2}n^2-\frac{1}{2}n\)
Solving Ux=y \(\frac{1}{2}n^2+\frac{1}{2}n\) \(\frac{1}{2}n^2-\frac{1}{2}n\)
Total \(\frac{1}{3}n^3+n^2-\frac{1}{3}n\) \(\frac{1}{3}n^3+\frac{1}{2}n^2-\frac{5}{6}n\)
***
(d)
Multiplications/Divisions Additions/Subtractions
Factorizing into LU \(\frac{1}{3}n^3-\frac{1}{3}n\) \(\frac{1}{3}n^3-\frac{1}{2}n^2+\frac{1}{6}n\)
Solving \(Ly^{(k)}=b^{(k)}\) \((\frac{1}{2}n^2-\frac{1}{2}n)m\) \((\frac{1}{2}n^2-\frac{1}{2}n)m\)
Solving \(Ux^{(k)}=y^{(k)}\) \((\frac{1}{2}n^2+\frac{1}{2}n)m\) \((\frac{1}{2}n^2-\frac{1}{2}n)m\)
Total \(\frac{1}{3}n^3+mn^2-\frac{1}{3}n\) \(\frac{1}{3}n^3+(m-\frac{1}{2})n^2-(m-\frac{1}{6})n\)
***
## 6.6.17

(a)\(|A|=3\alpha-2\beta=0\Rightarrow\alpha=\frac{2}{3}\beta\)

(b)\(|\alpha|>1,|\beta|<1\)

(c)\(\beta=1\)

(d)\(\alpha>\frac{2}{3},\beta=1\)


7.1.5(a)

\[ \begin{aligned} \|\pmb{x}-\tilde{\pmb{x}}\|_{\infty}&=\max(\frac{1}{7}-0.142,-\frac{1}{6}+0.166)=8.57\times 10^{-4}\\ \|A\tilde{\pmb{x}}-\pmb{b}\|_{\infty}&=\max(\frac{1}{2}*0.142-\frac{1}{3}*0.166-\frac{1}{63},\frac{1}{3}*0.142-\frac{1}{3}*0.166-\frac{1}{168})\\ &=2.06\times 10^{-4} \end{aligned} \]

7.1.7

\(A=\begin{pmatrix}1 & 1\\0 & 1\end{pmatrix},B=\begin{pmatrix}1 & 0\\1 & 1\end{pmatrix}\),那么此时 \(\|AB\|_{\infty}=2\),但是 \(\|A\|_{\infty}\|B\|_{\infty}=1\),不满足矩阵范数的性质


7.1.13

(1)\(\|A\|=0\Leftrightarrow A=\pmb{0}\)

  • 如果 \(A=\pmb{0}\),很显然 \(\|A\|=0\)
  • 如果 \(\|A\|=0,A\not=\pmb{0}\),那么我们可以找到一个非零向量 \(\pmb{x}=\{0,0,...,1,0,0,0\}\),其中 1 正好对应 A 中含有不为 0 的数的一行,使得 \(\|A\|\not=0\),矛盾

(2)\(\|\alpha A\|=|\alpha|\|A\|\),显然成立

(3)\(\|A+B\|\leq\|A\|+\|B\|\)

我们有 \(\|(A+B)\pmb{x}\|\leq\|A\pmb{x}\|+\|B\pmb{x}\|\)

那么 \(\|(A+B)\pmb{x}\|=\max\limits_{\|\pmb{x}\|=1}\|(A+B)\pmb{x}\|\leq\max\limits_{\|\pmb{x}\|=1}\|A\pmb{x}\|+\max\limits_{\|\pmb{x}\|=1}\|B\pmb{x}\|\)

(4)\(\|AB\|\leq\|A\|\|B\|\)

我们有 \(\|AB\pmb{x}\|\leq\|A\|\|B\pmb{x}\|\)

那么 \(\|AB\pmb{x}\|=\max\limits_{\|\pmb{x}\|=1}\|AB\pmb{x}\|\leq\max\limits_{\|\pmb{x}\|=1}\|A\|\|B\pmb{x}\|\leq\max\limits_{\|\pmb{x}\|=1}\|A\|\|B\|\|\pmb{x}\|=\|A\|\|B\|\)

评论