跳转至

Quiz

约 616 个字 16 张图片 预计阅读时间 3 分钟

Quiz 1

(a)Exact:\(\frac{4}{5}\times\frac{1}{3}=\frac{4}{15}\)

Three-Digit Chopping:\(\frac{4}{5}=0.800,\frac{1}{3}\approx 0.333,\frac{4}{5}\times\frac{1}{3}=0.8\times 0.333=0.2664\approx 0.266\)

Three-Digit Rounding:\(\frac{4}{5}=0.800,\frac{1}{3}\approx 0.333,\frac{4}{5}\times\frac{1}{3}=0.8\times 0.333=0.2664\approx 0.266\)

Relative Error:\(e=\frac{|p-p^*|}{|p|}=\frac{|\frac{4}{15}-0.266|}{\frac{4}{15}}=0.0025\)

(b)Exact:\((\frac{1}{3}+\frac{3}{11})-\frac{3}{20}=\frac{301}{660}\)

Three-Digit Chopping:\(\frac{1}{3}\approx 0.333,\frac{3}{11}\approx 0.272,\frac{3}{20}=0.150,0.333+0.272-0.150=0.455\)

Three-Digit Rounding:\(\frac{1}{3}\approx 0.333,\frac{3}{11}\approx 0.273,\frac{3}{20}=0.150,0.333+0.272-0.150=0.456\)

Chopping Error:\(e=\frac{|p-p^*|}{|p|}=\frac{|\frac{301}{660}-0.455|}{\frac{301}{660}}=0.002325\)

Rounding Error:\(e=\frac{|p-p^*|}{|p|}=\frac{|\frac{301}{660}-0.456|}{\frac{301}{660}}=0.000133\)


Quiz 2

构造 \(g(x)=x=(x+1)^{\frac{1}{3}},g'(x)=\frac{1}{3(x+1)^{\frac{2}{3}}}\),在 \([1,2]\)\(|g'(x)|\leq|g'(1)|\approx 0.21<1\),所以存在不动点且可以迭代计算

\[ \begin{aligned} p_1=g(p_0)=2^{\frac{1}{3}}\approx 1.2599&,p_2=g(p_1)=(1+1.2599)^{\frac{1}{3}}\approx 1.3123\\ \Rightarrow e\leq\frac{0.21}{1-0.21}|1.3123&-1.2599|=0.0139>10^{-2}\\ p_3=g(p_2)&=(1+1.3123)^{\frac{1}{3}}\approx 1.3224\\ \Rightarrow e=\frac{0.21^2}{1-0.21}|1.3123&-1.2599|=2.925\times 10^{-3}<10^{-2} \end{aligned} \]

综上计算答案为 \(1.3224\)


Quiz 3

(a)

\[ \begin{aligned} \overline{A}=\begin{bmatrix} 1 & 1 & 0 & 1 & 2\\ 2 & 1 & -1 & 1 & 1\\ 4 & -1 & -2 & 2 & 0\\ 3 & -1 & -1 & 2 & -3 \end{bmatrix} \Rightarrow\begin{bmatrix} 1 & 1 & 0 & 1 & 2\\ 0 & 1 & 1 & 1 & 3\\ 0 & 0 & 3 & 3 & 7\\ 0 & 0 & 0 & 0 & -4 \end{bmatrix} \end{aligned} \]

可以看到方程无解,不需要行交换

(b)

\[ \begin{aligned} \overline{A}=\begin{bmatrix} 1 & 1 & 0 & 1 & 2\\ 2 & 1 & -1 & 1 & 1\\ -1 & 2 & 3 & -4 & 4\\ 3 & -1 & -1 & 2 & -3 \end{bmatrix} \Rightarrow\begin{bmatrix} 1 & 1 & 0 & 1 & 2\\ 0 & 1 & 1 & 1 & 3\\ 0 & 0 & 0 & -6 & -3\\ 0 & 0 & 3 & 3 & 3\\ \end{bmatrix} \Rightarrow\begin{bmatrix} 1 & 1 & 0 & 1 & 2\\ 0 & 1 & 1 & 1 & 3\\ 0 & 0 & 1 & 1 & 1\\ 0 & 0 & 0 & -6 & -3 \end{bmatrix} \end{aligned} \]

方程有唯一解 \(x_1=-\frac{1}{2},x_2=2,x_3=\frac{1}{2},x_4=\frac{1}{2}\),需要进行行交换


Quiz 4

能观察到第一次消元第二行前三个元素均为 0,所以需要进行行交换

\[ \begin{aligned} P&=\begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 \end{bmatrix} \Rightarrow PA=\begin{bmatrix} 1 & -2 & 3 & 0\\ 2 & 1 & 3 & -1\\ 1 & -2 & 2 & -2\\ 1 & -2 & 3 & 1 \end{bmatrix}\\ L_1&=\begin{bmatrix} 1 & 0 & 0 & 0\\ -2 & 1 & 0 & 0\\ -1 & 0 & 1 & 0\\ -1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow L_1PA=\begin{bmatrix} 1 & -2 & 3 & 0\\ 0 & 5 & -3 & -1\\ 0 & 0 & -1 & -2\\ 0 & 0 & 0 & 1 \end{bmatrix}=U\\ \Rightarrow A&=P^{-1}L_1^{-1}U,P'=P^{-1}=\begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 \end{bmatrix}\\ L&=L_1^{-1}=\begin{bmatrix} 1 & 0 & 0 & 0\\ 2 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1 \end{bmatrix},U=\begin{bmatrix} 1 & -2 & 3 & 0\\ 0 & 5 & -3 & -1\\ 0 & 0 & -1 & -2\\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned} \]

Quiz 5

\[ \begin{aligned} x_1^{(1)}&=x_1^{(0)}+\frac{1.1}{3}(1-3x_1^{(0)}+x_2^{(0)}-x_3^{(0)})=\frac{1.1}{3}\approx 0.367\\ x_2^{(1)}&=x_2^{(0)}+\frac{1.1}{6}(0-3x_1^{(1)}-6x_2^{(0)}-2x_3^{(0)})=-\frac{1.21}{6}\approx -0.202\\ x_3^{(1)}&=x_3^{(0)}+\frac{1.1}{7}(0-3x_1^{(1)}-3x_2^{(1)}-7x_3^{(0)})\approx 0.551\\ \therefore x^{(1)}&=\begin{bmatrix} 0.367\\ -0.202\\ 0.551 \end{bmatrix} \end{aligned} \]

Quiz 6

(a)

\[ \begin{aligned} \det(A)&=\frac{1}{2}\times\frac{1}{4}-\frac{1}{3}\times\frac{1}{3}=\frac{1}{72}\\ A^{-1}&=72\times\begin{bmatrix} \frac{1}{4} & -\frac{1}{3}\\ -\frac{1}{3} & \frac{1}{2} \end{bmatrix}=\begin{bmatrix} 18 & -24\\ -24 & 36 \end{bmatrix}\\ K(A)&=\|A\|\|A^{-1}\|=\frac{5}{6}\times 60=50 \end{aligned} \]

(b)

\[ \begin{aligned} \det(A)&=1\times 2-1.00001\times 2=-0.00002\\ A^{-1}&=-50000\times\begin{bmatrix} 2 & -2\\ -1.00001 & 1 \end{bmatrix}=\begin{bmatrix} -100000 & 100000\\ 50000.5 & -50000 \end{bmatrix}\\ K(A)&=\|A\|\|A^{-1}\|=3.00001\times 200000=600002 \end{aligned} \]

Quiz 7

\(x_0=0.0\) 1.0000
\(x_1=0.2\) 1.22140 1.1070
\(x_2=0.4\) 1.49182 1.3521 0.61275
\(x_3=0.6\) 1.82212 1.6515 0.7485 0.22625
\(x_4=0.8\) 2.22554 2.0171 0.914 0.27583 0.061975
\[ \begin{aligned} \therefore f(0.05)&=f(0)+1.1070*(0.05-0)+0.61275*(0.05-0)*(0.05-0.2)\\ &+0.22625*(0.05-0)*(0.05-0.2)*(0.05-0.4)\\ &+0.061975*(0.05-0)*(0.05-0.2)*(0.05-0.4)*(0.05-0.6)\approx 1.0513 \end{aligned} \]

Quiz 8

\(F(l)\) \(l\) \(x= l-E\)
2 7.0 1.7
4 9.4 4.1
6 12.3 7.0

对误差 \(S=\sum\limits_{n=1}^3[F-kx]^2\) 求偏导得 \(\frac{\partial S}{\partial k}=\sum\limits_{i=1}^3-2x(F-kx)=0\Rightarrow k=\frac{\sum\limits_{i=1}^nFx}{\sum\limits_{i=1}^nx^2}\approx 0.89956\)


Quiz 9

\(\int_{-1}^1 1dx=2,\int_{-1}^1 x^2dx=\frac{2}{3},\int_{-1}^1(x^2-2x+3)dx=\frac{20}{3},\int_{-1}^1(x^2-2x+3)xdx=-\frac{4}{3}\)

\(\therefore f(x)\approx \frac{10}{3}-2x=3.33333-2x\)


Quiz 10

\[ \begin{aligned} LHS&=\int_{-1}^1\frac{[\cos(n\arccos x)]^2}{\sqrt{1-x^2}}dx\\ &=\int_{-1}^1[\cos(n\arccos x)]^2d(\arccos x)\\ &=\int_0^{\pi}[\cos ny]^2dy=\int_0^{\pi}\frac{\cos 2ny+1}{2}dy=\frac{\pi}{2} \end{aligned} \]

或者换元 \(\theta=\arccos(x)\) 也可


Quiz 11

根据题目条件我们得到方程组:

\[ \begin{cases} 2f(0)=12\\ 1\times (f(-0.5)+f(0.5))=5\\ \frac{1}{3}[f(-1)+4f(0)+f(1)]=6\\ f(-1)=f(1)\\ f(-0.5)=f(0.5)-1 \end{cases} \]

解得 \(f(-1)=-3,f(-0.5)=2,f(0)=6,f(0.5)=3,f(1)=-3\)


Quiz 12

给定节点 \(x_1,x_2,\cdots,x_n\),构造 \(w(x)=\prod_{i=1}^n(x-x_i),P(x)=w^2(x)=(x-x_1)^2(x-x_2)^2\cdots(x-x_n)^2\)

计算 \(P(x)\) 在区间 \([a,b]\) 上的精确积分值 \(I=\int_a^bP(x)dx=\int_a^b[w(x)]^2dx>0\)

应用到公式当中,\(Q(P)=\sum\limits_{i=1}^nc_iP(x_i)=0\neq I\)

所以存在一个 2n 次多项式使得求积公式不精确


Quiz 13

对于中点法:

\[ \begin{aligned} w_{i+1}&=w_i+h[-w_i-\frac{h}{2}(-w_i+t_i+1)+t_i+\frac{h}{2}+1]\\ &=w_i(1-h+\frac{h^2}{2})+t_ih(1-\frac{h}{2})+h \end{aligned} \]

对于改进欧拉法:

\[ \begin{aligned} w_{i+1}&=w_i+\frac{h}{2}\cdot[f(t_i,w_i)+f(t_i+h,w_i+h\cdot f(t_i,w_i))]\\ &=w_i+\frac{h}{2}\cdot[-w_i+t_i+1+-w_i-h(-w_i+t_i+1)+t_i+h+1]\\ &=w_i(1-h+\frac{h^2}{2})+t_ih(1-\frac{h}{2})+h \end{aligned} \]

所以两者迭代公式相同,对任意 \(h\) 估计也相同


Quiz 14

使用牛顿向后差分公式,在 \((t_i,f_i),(t_{i-1},f_{i-1})\) 上对 \(f\) 插值:

\[ P_1(t_i+sh) = f_i + s \nabla f_i = f_i + s(f_i - f_{i-1}) \]

得到 \(w_{i+1} = w_i + h \int_0^1 [f_i + s(f_i - f_{i-1})]ds = w_i + \frac{h}{2}(3f_i - f_{i-1})\)


Quiz 15

对于测试方程 \(f(t,y)=\lambda y\),代入梯形方法公式:

\[ \begin{aligned} w_{i+1}&=w_i+\frac{h}{2}(\lambda w_i+\lambda w_{i+1})\\ \Rightarrow w_{i+1}-\frac{h\lambda}{2}w_{i+1}&=w_i+\frac{h\lambda}{2}w_i\\ \Rightarrow w_{i+1}&=\frac{1+\frac{h\lambda}{2}}{1-\frac{h\lambda}{2}}w_i \end{aligned} \]

\(z=h\lambda\),则解得比例因子为 \(R(z)=\frac{1+\frac{z}{2}}{1-\frac{z}{2}}\),由稳定性要求 \(|R(z)|\leq 1\)

\[ \begin{aligned} \bigg|\frac{1+\frac{z}{2}}{1-\frac{z}{2}}\bigg|&\leq 1\\ \bigg|1+\frac{z}{2}\bigg|^2&\leq\bigg|1-\frac{z}{2}\bigg|^2\\ (1+\frac{z}{2})(1+\frac{\overline{z}}{2})&\leq(1-\frac{z}{2})(1-\frac{\overline{z}}{2})\\ \Rightarrow\frac{z+\overline{z}}{2}&\leq -\frac{z+\overline{z}}{2}\\ \Rightarrow Re(z)&\leq 0 \end{aligned} \]

因此稳定性要求 \(Re(\lambda)\leq 0\)

评论