跳转至

Homework 14

约 283 个字 7 张图片 预计阅读时间 1 分钟

4.7.1

(a) 利用勒让德多项式来构造,四阶多项式为:\(P_0=1,P_1=x,P_2=\frac{3}{2}x^2-\frac{1}{2},P_3=\frac{5}{2}x^3-\frac{3}{2}x\)

使用 \(P_3\) 的根为 \(0,\pm\sqrt{\frac{3}{5}}\),有:

\[ \begin{aligned} \int_1^{1.5}x^2\ln xdx&=\frac{1}{4}\int_{-1}^1(\frac{t+5}{4})^2\ln(\frac{t+5}{4})dt\\ &\approx\frac{1}{4}[0.5556*(\frac{5-0.7746}{4})^2\ln\frac{5-0.7746}{4}+0.8889*(\frac{5}{4})^2\ln\frac{5}{4}\\ &+0.5556*(\frac{5+0.7746}{4})^2\ln\frac{5+0.7746}{4}]\approx 0.1923 \end{aligned} \]

(b)

\[ \begin{aligned} \int_0^1 x^2e^{-x}dx&=\frac{1}{2}\int_{-1}^1(\frac{t+1}{2})^2e^{-\frac{t+1}{2}}dt\\ &\approx\frac{1}{2}[0.5556*(\frac{1-0.7746}{2})^2e^{-\frac{1-0.7746}{2}}+0.8889*(\frac{1}{2})^2e^{-\frac{1}{2}}\\ &+0.5556*(\frac{1+0.7746}{2})^2e^{-\frac{1+0.7746}{2}}]\approx 0.1594 \end{aligned} \]

同理可得


4.7.5

要求精度为 3,那么要求对 \(f(x)=1,x,x^2,x^3\) 均成立,有方程组:

\[ \begin{cases} 2=a+b\\ 0=-a+b+c+d\\ \frac{2}{3}=a+b-2c+2d\\ 0=-a+b+3c+3d \end{cases} \]

解得 \(a=1,b=1,c=\frac{1}{3},d=\frac{1}{3}\)


5.3.5(a)(b)

(a)\(y''=\frac{2}{t}y'-\frac{2}{t^2}y+2te^t+t^2e^t=\frac{2}{t^2}y+4te^4+t^2e^t\)

二阶泰勒方法为 \(w_{i+1}=w_i+hy'+\frac{h^2}{2}y''\)

\(t\) \(w_i\) \(y(t)\)
1 0 0
1.1 0.339785 0.345920
1.5 3.910985 3.967666
1.6 5.643081 5.720962
1.9 14.15268 14.32308
2.0 18.46999 18.68310

(b)插值法即可

评论