Homework 14¶
约 283 个字 7 张图片 预计阅读时间 1 分钟
4.7.1¶
(a) 利用勒让德多项式来构造,四阶多项式为:\(P_0=1,P_1=x,P_2=\frac{3}{2}x^2-\frac{1}{2},P_3=\frac{5}{2}x^3-\frac{3}{2}x\)
使用 \(P_3\) 的根为 \(0,\pm\sqrt{\frac{3}{5}}\),有:
\[
\begin{aligned}
\int_1^{1.5}x^2\ln xdx&=\frac{1}{4}\int_{-1}^1(\frac{t+5}{4})^2\ln(\frac{t+5}{4})dt\\
&\approx\frac{1}{4}[0.5556*(\frac{5-0.7746}{4})^2\ln\frac{5-0.7746}{4}+0.8889*(\frac{5}{4})^2\ln\frac{5}{4}\\
&+0.5556*(\frac{5+0.7746}{4})^2\ln\frac{5+0.7746}{4}]\approx 0.1923
\end{aligned}
\]
(b)
\[
\begin{aligned}
\int_0^1 x^2e^{-x}dx&=\frac{1}{2}\int_{-1}^1(\frac{t+1}{2})^2e^{-\frac{t+1}{2}}dt\\
&\approx\frac{1}{2}[0.5556*(\frac{1-0.7746}{2})^2e^{-\frac{1-0.7746}{2}}+0.8889*(\frac{1}{2})^2e^{-\frac{1}{2}}\\
&+0.5556*(\frac{1+0.7746}{2})^2e^{-\frac{1+0.7746}{2}}]\approx 0.1594
\end{aligned}
\]
同理可得
4.7.5¶
要求精度为 3,那么要求对 \(f(x)=1,x,x^2,x^3\) 均成立,有方程组:
\[
\begin{cases}
2=a+b\\
0=-a+b+c+d\\
\frac{2}{3}=a+b-2c+2d\\
0=-a+b+3c+3d
\end{cases}
\]
解得 \(a=1,b=1,c=\frac{1}{3},d=\frac{1}{3}\)
5.3.5(a)(b)¶
(a)\(y''=\frac{2}{t}y'-\frac{2}{t^2}y+2te^t+t^2e^t=\frac{2}{t^2}y+4te^4+t^2e^t\)
二阶泰勒方法为 \(w_{i+1}=w_i+hy'+\frac{h^2}{2}y''\)
\(t\) | \(w_i\) | \(y(t)\) |
---|---|---|
1 | 0 | 0 |
1.1 | 0.339785 | 0.345920 |
1.5 | 3.910985 | 3.967666 |
1.6 | 5.643081 | 5.720962 |
1.9 | 14.15268 | 14.32308 |
2.0 | 18.46999 | 18.68310 |
(b)插值法即可