跳转至

Homework 12

约 255 个字 4 张图片 预计阅读时间 1 分钟

8.3.3

根据公式计算 \(\tilde{T_4}\) 的 4 个零点:\(x_1=\cos(\frac{1}{8}\pi),x_2=\cos(\frac{3}{8}\pi),x_3=\cos(\frac{5}{8}\pi),x_4=\cos(\frac{7}{8}\pi)\)

(a)\(c_0=f[x_1]=y_1=e^{x_1}=2.519,c_1=\frac{y_2-y_1}{x_2-x_1}=1.945,c_2=0.705,c_3=0.176\)

(b)\(c_0=f[x_1]=0.798,c_1=0.786,c_2=-0.144,c_3=-0.156\)

(c)\(c_0=1.073,c_1=0.379,c_2=-0.096,c_3=0.051\)


8.3.7

六阶麦克劳林多项式为 \(\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{1}{7!}\sin^7(\xi)x^7\)

对于切比雪夫多项式,\(T_0(x)=1,T_1(x)=x,T_2(x)=2x^2-1,T_3(x)=4x^3-3x\),\(T_4(x)=8x^4-8x^2+1,T_5(x)=16x^5-20x^3+5x\)

尝试降到三阶:\(P_3(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{1}{5!}\times\frac{1}{2^4}T_5(x)=09973958x-0.15625x^3\)

误差 \(\max_{[-1,1]}|\sin x-P_3(x)|<\max_{[-1,1]}|\sin x-P_4(x)|+\frac{1}{5!*2^4}\max_{[-1,1]}|T_5(x)|\) \(=\frac{1}{7!}+\frac{1}{5!*16}=7.19*10^{-4}\)


8.3.9

\[ \begin{aligned} LHS&=\int_{-1}^1\frac{[\cos(n\arccos x)]^2}{\sqrt{1-x^2}}dx\\ &=\int_{-1}^1[\cos(n\arccos x)]^2d(\arccos x)\\ &=\int_0^{\pi}[\cos ny]^2dy=\int_0^{\pi}\frac{\cos 2ny+1}{2}dy=\frac{\pi}{2} \end{aligned} \]

评论