跳转至

Homework 07

Question 1

Homework 5 Question 1


Question 2

(1)甲投注 \(A\) 获胜的期望收益为 \(pa+p(1-a)+2(1-p)a=p+2(1-p)a\)

投注 \(B\) 获胜的期望收益为 \(2p(1-a)+(1-p)a+(1-p)(1-a)=1+p-2pa\)

(2)除甲之外的其余 \(N\) 人中,有 \(k\) 人投注 \(A\) 的概率为 \(C_N^kp^k(1-p)^{N-k},0\leq k\leq N\)

若甲投注 \(A\) 获胜,当且仅当 \(k=N\)\(B\) 获胜时甲才有收益,所以甲的期望收益为:

\[ \begin{aligned} &a\sum\limits_{k=0}^NC_N^kp^k(1-p)^{N-k}·\frac{N+1}{k+1}+(1-a)p^N\\ =&a\sum\limits_{k=0}^N\frac{(N+1)!}{(k+1)!(N-k)!}p^k(1-p)^{N-k}+(1-a)p^N\\ =&a\sum\limits_{k=1}^{N+1}\frac{(N+1)!}{k!(N-k)!}p^{k-1}(1-p)^{N-k+1}+(1-a)p^N\\ =&a·\frac{1}{p}(\sum\limits_{k=0}^{N+1}C_{N+1}^kp^k(1-p)^{N-k+1}-(1-p)^{N+1})+(1-a)p^N\\ =&a·\frac{1}{p}(1-(1-p)^{N+1})+(1-a)p^N \end{aligned} \]

若甲投注 \(B\) 获胜,当且仅当 \(k=0\)\(A\) 获胜时甲才有收益,所以甲的期望收益为:

\[ \begin{aligned} &a(1-p)^N+(1-a)\sum\limits_{k=0}^NC_N^kp^k(1-p)^{N-k}\frac{N+1}{N-k+1}\\ =&a(1-p)^N+(1-a)\sum\limits_{k=0}^N\frac{(N+1)!}{k!(N-k+1)!}(1-p)^{N-k}\\ =&a(1-p)^N+(1-a)\frac{1}{1-p}(\sum\limits_{k=1}^{N+1}\frac{(N+1)!}{k!(N-k+1)!}(1-p)^{N+1-k}-p^{N+1})\\ =&a(1-p)^N+\frac{1-a}{1-p}(1-p^{N+1}) \end{aligned} \]

比较上面两式,当 \(a\geq\frac{p-p^{N+1}}{1-(1-p)^{N+1}-p^{N+1}}\) 时,有:

\[ \frac{a}{p}(1-(1-p)^{N+1})+(1-a)p^N\geq a(1-p)^N+\frac{1-a}{1-p}(1-p^{N+1}) \]

此时甲的收益较大

(3)若甲投注 \(A\) 获胜两场,收益约为 \(\frac{1}{4}(N+1)+\frac{1}{2}·1+\frac{1}{4}·0\approx\frac{1}{4}N\)

投注 \(A\) 一胜一负,收益约为 \(\frac{1}{4}(N+1)+\frac{1}{4}·0+\frac{1}{4}·(N+1)+\frac{1}{4}·0\approx\frac{1}{2}N\)

投注 \(B\) 获胜两场,收益约为 1。所以甲应当投注 \(A\) 一胜一负。

评论