Homework 06¶
Question 01¶
(1)上升阶段受力分析可得:
两边积分可得 \(t_a=\int_0^{v_0}\frac{mdv}{mg+f(v)}\)
下降阶段同理受力分析得 \(t_d=\int_0^{v_f}\frac{mdv}{mg-f(v)}\)
考虑上升距离:
两边积分可得 \(h=\int_0^{v_0}\frac{mvdv}{mg+f(v)}\)
下降阶段同理可得 \(h=\int_0^{v_f}\frac{mvdv}{mg-f(v)}\)
由上升下降距离相同有 \(\int_0^{v_0}\frac{mvdv}{mg+f(v)}=\int_0^{v_f}\frac{mvdv}{mg-f(v)}\)
(2)由 \(mg+f(v)>mg-f(v)\),所以 \(v_0>v_f,t_a<t_d\)
Question 02¶
(1)易得在空中的时间为 \(t=\frac{2v\sin\theta}{g}\),水平速度为 \(v_x=v\cos\theta\),竖直速度为 \(v_y=v\sin\theta-gt\)
所以长度为 \(L(v,\theta)=2\int_0^{\frac{v\sin\theta}{g}}\sqrt{(v\cos\theta)^2+(v\sin\theta-gt)^2}dt\)
令 \(s=\sqrt{(v\cos\theta)^2+(v\sin\theta-gt)^2}\)
则 \(L(v,\theta)=(gt-v\sin\theta)s+(\frac{v\cos\theta}{g})^2\ln[(gt-v\sin\theta)+s]|_0^{\frac{v\sin\theta}{g}}=\frac{v^2\sin\theta}{g}+\frac{v^2\cos^2\theta}{g}\ln\frac{\cos\theta}{1-\sin\theta}\)
(2)\(L(v,\frac{\pi}{4})=\frac{\sqrt{2}v^2}{2g}+\frac{v^2}{2g}\ln\frac{\sqrt{2}}{2-\sqrt{2}}\approx 1.1\frac{v^2}{g}\)
\(L(v,\frac{\pi}{2})=\frac{v^2}{g}\)
\(\therefore L(v,\frac{\pi}{4})>L(v,\frac{\pi}{2})\)
(3)\(\frac{\partial L}{\partial\theta}=\frac{v^2\cos\theta}{g}-\frac{2v^2\sin\theta\cos\theta}{g}\ln\frac{\cos\theta}{1-\sin\theta}+\frac{v^2\cos\theta}{g}=0\)
\(\therefore\sin\theta\ln\frac{\cos\theta}{1-\sin\theta}=1\)