跳转至

Homework 03

约 829 个字 5 张图片 预计阅读时间 4 分钟

4.1

(a)信道概率转移矩阵为 \(P=\begin{pmatrix}1-\epsilon-\delta & \delta & \epsilon\\\epsilon & \delta & 1-\epsilon-\delta\end{pmatrix}\)

该信道为准对称信道,取 \(P(X=0)=P(X=1)=0.5\) 时达到信道容量,此时:

\[ \begin{aligned} P(Y=0)&=0.5-0.5\delta\\ P(Y=1)&=\delta\\ P(Y=2)&=0.5-0.5\delta \end{aligned} \]

信道容量为:

\[ \begin{aligned} C&=I(X=0;Y)=I(X=1;Y)\\ &=\sum\limits_{j=0}^2p(j|0)\log\frac{p(j|0)}{p(j)}\\ &=(1-\epsilon-\delta)\log\frac{1-\epsilon-\delta}{0.5-0.5\delta}+\delta\log\frac{\delta}{\delta}+\epsilon\log\frac{\epsilon}{0.5-0.5\delta}\\ &=(1-\epsilon-\delta)\log(1-\epsilon-\delta)+\epsilon\log\epsilon-(1-\delta)\log(0.5-0.5\delta) \end{aligned} \]

(b)信道概率转移矩阵为 \(P=\begin{pmatrix}1 & 0 & 0\\0.5 & 0.25 & 0.25\\0 & 0.5 & 0.5\end{pmatrix}\)

\(P(X=0)=P(X=2)=0.5,P(X=1)=0\) 时,\(P(Y=0)=0.5,P(Y=1)=P(Y=2)=0.25\),有:

\[ \begin{aligned} I(X=0;Y)&=\sum\limits_{j=0}^2 p(j|0)\log\frac{p(j|0)}{p(j)}=1\\ I(X=2;Y)&=\sum\limits_{j=0}^2 p(j|2)\log\frac{p(j|2)}{p(j)}=1\\ I(X=1;Y)&=0\leq 1 \end{aligned} \]

因此信道容量 \(C=1\)

(c)信道概率转移矩阵为 \(P=\begin{pmatrix}1-\epsilon & \epsilon & 0\\0 & 1-\epsilon & \epsilon\\\epsilon & 0 & 1-\epsilon\end{pmatrix}\)

这是一个对称信道,因此当输入为均匀分布时达到信道容量,\(C=(1-\epsilon)\log 3(1-\epsilon)+\epsilon\log 3\epsilon=\log 3+\epsilon\log\epsilon+(1-\epsilon)\log(1-\epsilon)\)

(d)信道概率转移矩阵为 \(P=\begin{pmatrix}\frac{3}{4} & \frac{1}{4} & 0\\\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\0 & \frac{1}{4} & \frac{3}{4}\end{pmatrix}\)

\(P(X=0)=P(X=2)=0.5,P(X=1)=0\) 时,\(P(Y=1)=\frac{1}{4},P(Y=0)=P(Y=2)=\frac{3}{8}\),有:

\[ \begin{aligned} I(X=0;Y)&=\sum\limits_{j=0}^2 p(j|0)\log\frac{p(j|0)}{p(j)}=\frac{3}{4}\\ I(X=2;Y)&=\sum\limits_{j=0}^2 p(j|2)\log\frac{p(j|2)}{p(j)}=\frac{3}{4}\\ I(X=1;Y)&=\sum\limits_{j=0}^2 p(j|1)\log\frac{p(j|1)}{p(j)}=\frac{2}{3}\log\frac{8}{9}+\frac{1}{3}\log\frac{4}{3}\leq\frac{3}{4} \end{aligned} \]

因此信道容量 \(C=\frac{3}{4}\)

(e)信道概率转移矩阵为 \(P=\begin{pmatrix}\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3}\\0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3}\end{pmatrix}\)

这是一个准对称信道,取 \(P(X=0)=P(X=1)=P(X=2)=\frac{1}{3}\) 时达到信道容量,此时 \(P(Y=0)=P(Y=1)=P(Y=2)=\frac{2}{9},P(Y=3)=\frac{1}{3}\)

信道容量为:

\[ \begin{aligned} C=I(X=0;Y)=I(X=1;Y)=I(X=2;Y)&=\sum\limits_{j=0}^3 p(j|0)\log\frac{p(j|0)}{p(j)}\\ &=2\times\frac{1}{3}\log\frac{3}{2}=\frac{2}{3}\log\frac{3}{2} \end{aligned} \]

(f)信道概率转移矩阵为 \(P=\begin{pmatrix}1-\epsilon & \epsilon\\\delta & 1-\delta\end{pmatrix}\)

转移矩阵可逆,设 \(P(X=0)=p,P(X=1)=1-p,0<p<1,\alpha=\begin{bmatrix}-H(\epsilon)\\-H(\delta)\end{bmatrix}\)

解方程 \(P\beta=\alpha\),得到 \(\beta=\begin{bmatrix}\frac{\epsilon H(\delta)-(1-\delta)H(\epsilon)}{1-\epsilon-\delta}\\\frac{\delta H(\epsilon)-(1-\epsilon)H(\delta)}{1-\epsilon-\delta}\end{bmatrix}\)

\[ \therefore C=\log[2^{\frac{\epsilon H(\delta)-(1-\delta)H(\epsilon)}{1-\epsilon-\delta}}+2^{\frac{\delta H(\epsilon)-(1-\epsilon)H(\delta)}{1-\epsilon-\delta}}] \]

4.2

信道可视为一个无噪信道 \(C_1\) 和一个二元对称信道 \(C_2\) 的和信道

\(C_1=0,C_2=1-H(\epsilon)\),则总信道为 \(C=\log[1+2^{1-H(\epsilon)}]\)


4.9

该信道是对称信道,取 \(P(X=0)=P(X=1)=P(X=2)=P(X=3)=\frac{1}{4}\)

信道容量为:

\[ \begin{aligned} C&=I(X=0;Y)=I(X=1;Y)=I(X=2;Y)=I(X=3;Y)\\ &=\sum\limits_{j=0}^3 p(j|0)\log\frac{p(j|0)}{p(j)}\\ &=2-H(p) \end{aligned} \]

4.13

(a) \(C=\max\limits_{f(x)}I(X;Y)=\max\limits_{f(x)}[H(Y)-H(Y|X)]\)

因为 \(Y=(X+Z)\text{ mod }2\pi\),当 \(X\) 确定时 \(H(Y|X)\) 仅由噪声 \(Z\) 确定,即 \(H(Y|X)=H(Z\text{ mod }2\pi)\)

对于 \(H(Y)\) 来说,当 \(Y\) 为均匀分布时最大, \(H(Y)_{\max}=\log 2\pi\)

\(a>\pi\) 时,噪声是均匀的,因此 \(H(Y|X)=\log 2\pi,C=0\)

(b)当 \(a\leq\pi\) 时,噪声也是均匀的,因此 \(H(Y|X)=\log 2a,C=\log(\frac{\pi}{a})\)


4.14

传输每比特的平均能量为 \(\epsilon_b=\frac{P}{R}\)

由容量公式可得 \(\eta=\frac{R}{W}=\log(1+\frac{\epsilon_bR}{N_0W})\)

所以在频谱效率为 \(\eta\) 时,\(\epsilon_b^*(\eta)=\frac{N_0}{\eta}(2^{\eta}-1)\)

由于是 \(\eta\) 的严格单调增函数,所以传输 1 比特的最小能量为 \(\epsilon_b^*(0)=\lim\limits_{R\rightarrow 0}\epsilon_b^*(\eta)=N_0\ln 2=0.693N_0\)

设用 \(T_b\) 时间传送 1 bit 信息,由 Shannon 公式:

\[ \begin{aligned} C_{T_b}=T_b\cdot W\log(1+\frac{P}{N_0W})=1\\ \Rightarrow T_bW=\frac{1}{\log(1+\frac{P}{N_0W})} \end{aligned} \]

要求 \(\frac{P}{N_0W}>4000\),那么有 \(\epsilon_b=PT_b>4000N_0WT_b=\frac{4000N_0}{\log(1+\frac{P}{N_0W})}\)

因此:

\[ \frac{\epsilon_b}{\epsilon_{\min}}\geq\frac{4000N_0}{0.693N_0\times\log 4001}=482 \]

评论